CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
research
Overconvergent de Rham-Witt cohomology
Authors
Christopher Davis
Andreas Langer
Thomas Zink
Publication date
8 May 2013
Publisher
'Societe Mathematique de France'
Abstract
Copyright © 2011 Société mathématique de FranceThe goal of this work is to construct, for a smooth variety X over a perfect field k of finite characteristic p > 0, an overconvergent de Rham-Witt complex WyX=k as a suitable sub-complex of the de Rham-Witt complex of Deligne-Illusie. This complex, which is functorial in X, is a complex of etale sheaves and a differential graded algebra over the ring Wy( OX) of Overconvergent Witt-vectors. If X is affine one proves that there is a isomorphism between Monsky-Washnitzer cohomology and (rational) overconvergent de Rham-Witt cohomology. Finally we define for a quasiprojective X an isomorphism between the rational overconvergent de Rham-Witt cohomology and the rigid cohomology
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Supporting member
Open Research Exeter
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:ore.exeter.ac.uk:10871/910...
Last time updated on 06/08/2013