research

Design considerations for a background limited 350 micron pixel array using lumped element superconducting microresonators

Abstract

Future submillimeter telescopes will demand arrays with ~ 10^6 pixels to fill the focal plane. MAKO is a 350 µm camera being developed to demonstrate the use of superconducting microresonators to meet the high multiplexing factors required for scaling to large-format arrays while offering background-limited single-pixel sensitivity. Candidate pixel designs must simultaneously meet many requirements. To achieve the desired noise equivalent powers it must efficiently absorb radiation, feature a high responsivity, and exhibit low intrinsic device noise. Additionally, the use of high resonator quality factors of order ~ 10^5 and resonant frequencies of order f_(res) ≈ 100 MHz are desirable in order to reduce the per-pixel bandwidth to a minimum set by telescope scan speeds. This allows a maximum number of pixels to be multiplexed in a fixed electronic bandwidth. Here we present measurement results of the first MAKO prototype array which meets these design requirements while demonstrating sufficient sensitivity for background-limited operation at ground-based, far-infrared telescopes

    Similar works