Nitrogen leaching from natural ecosystems under global change : A modelling study

Abstract

To study global nitrogen (N) leaching from natural ecosystems under changing N deposition, climate, and atmospheric CO2, we performed a factorial model experiment for the period 1901-2006 with the N-enabled global terrestrial ecosystem model LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator). In eight global simulations, we used either the true transient time series of N deposition, climate, and atmospheric CO2 as input or kept combinations of these drivers constant at initial values. The results show that N deposition is globally the strongest driver of simulated N leaching, individually causing an increase of 88% by 1997-2006 relative to pre-industrial conditions. Climate change led globally to a 31%increase in N leaching, but the size and direction of change varied among global regions: Leaching generally increased in regions with high soil organic carbon storage and high initial N status, and decreased in regions with a positive trend in vegetation productivity or decreasing precipitation. Rising atmospheric CO2 generally caused decreased N leaching (33% globally), with strongest effects in regions with high productivity and N availability. All drivers combined resulted in a rise of N leaching by 73% with strongest increases in Europe, eastern North America and South-East Asia, where N deposition rates are highest. Decreases in N leaching were predicted for the Amazon and northern India. We further found that N loss by fire regionally is a large term in the N budget, associated with lower N leaching, particularly in semi-arid biomes. Predicted global N leaching from natural lands rose from 13.6 TgNyr-1 in 1901-1911 to 18.5 TgNyr-1 in 1997-2006, accounting for reductions of natural land cover. Ecosystem N status (quantified as the reduction of vegetation productivity due to N limitation) shows a similar positive temporal trend but large spatial variability. Interestingly, this variability is more strongly related to vegetation type than N input. Similarly, the relationship between N status and (relative) N leaching is highly variable due to confounding factors such as soil water fluxes, fire occurrence, and growing season length. Nevertheless, our results suggest that regions with very high N deposition rates are approaching a state of N saturation

    Similar works

    Full text

    thumbnail-image