research

Flat trace statistics of the transfer operator of a random partially expanding map

Abstract

We consider the skew-product of an expanding map EE on the circle T\mathbb T with an almost surely Ck\mathcal C^k random perturbation τ=τ0+δτ\tau=\tau_0+\delta\tau of a deterministic function τ0\tau_0: F:{T×RT×R(x,y)(E(x),y+τ(x))F :\left\{\begin{array}{rcl} \mathbb T \times \mathbb R & \longrightarrow & \mathbb T \times \mathbb R\\ (x,y)& \longmapsto & (E(x), y+\tau(x))\\ \end{array} \right. The associated transfer operator L:uCk(T×R)uF\mathcal L:u \in \mathcal C^k (\mathbb T \times \mathbb R) \mapsto u\circ F can be decomposed with respect to frequency in the yy variable into a family of operators acting on functions on the circle: Lξ:{Ck(T)Ck(T)ueiξτuE\mathcal L_\xi :\left\{\begin{array}{rcl} \mathcal C^k(\mathbb T) & \longrightarrow & \mathcal C^k(\mathbb T)\\ u & \longmapsto & e^{i\xi\tau}u\circ E \\ \end{array} \right. We show that the flat traces of Lξn\mathcal L^n_{\xi} behave as normal distributions in the semiclassical limit n,ξn, \xi\to\infty up to the Ehrenfest time ncklogξn\leq c_k\log\xi

    Similar works