Although environmental radioactivity is all around us, the collective public
imagination often associates a negative feeling to this natural phenomenon. To
increase the familiarity with this phenomenon we have designed, implemented,
and tested an interdisciplinary educational activity for pre-collegiate
students in which nuclear engineering and computer science are ancillary to the
comprehension of basic physics concepts. Teaching and training experiences are
performed by using a 4" x 4" NaI(Tl) detector for in-situ and laboratory
{\gamma}-ray spectroscopy measurements. Students are asked to directly assemble
the experimental setup and to manage the data-taking with a dedicated Android
app, which exploits a client-server system that is based on the Bluetooth
communication protocol. The acquired {\gamma}-ray spectra and the experimental
results are analyzed using a multiple-platform software environment and they
are finally shared on an open access Web-GIS service. These all-round
activities combining theoretical background, hands-on setup operations, data
analysis, and critical synthesis of the results were demonstrated to be
effective in increasing students' awareness in quantitatively investigating
environmental radioactivity. Supporting information to the basic physics
concepts provided in this article can be found at
http://www.fe.infn.it/radioactivity/educational