research

Cevian operations on distributive lattices

Abstract

We construct a completely normal bounded distributive lattice D in which for every pair (a, b) of elements, the set {x \in D | a \le b \lor x} has a countable coinitial subset, such that D does not carry any binary operation - satisfying the identities x \le y \lor(x-y),(x-y)\land(y-x) = 0, and x-z \le (x-y)\lor(y-z). In particular, D is not a homomorphic image of the lattice of all finitely generated convex {\ell}-subgroups of any (not necessarily Abelian) {\ell}-group. It has 2elements.ThissolvesnegativelyafewproblemsstatedbyIberkleid,Martiˊnez,andMcGovernin2011andrecentlybytheauthor.Thisworkalsoservesaspreparationforaforthcomingpaperinwhichweprovethatforanyinfinitecardinal\aleph 2 elements. This solves negatively a few problems stated by Iberkleid, Mart{\'i}nez, and McGovern in 2011 and recently by the author. This work also serves as preparation for a forthcoming paper in which we prove that for any infinite cardinal \lambda,theclassofStonedualsofspectraofallAbeliangroupswithorderunitisnotclosedunderL, the class of Stone duals of spectra of all Abelian {\ell}-groups with order-unit is not closed under L \infty\lambda$-elementary equivalence.Comment: 23 pages. v2 removes a redundancy from the definition of a Cevian operation in v1.In Theorem 5.12, Idc should be replaced by Csc (especially on the G side

    Similar works