Consecutive thin sections of tissue samples make it possible to study local
variation in e.g. protein expression and tumor heterogeneity by staining for a
new protein in each section. In order to compare and correlate patterns of
different proteins, the images have to be registered with high accuracy. The
problem we want to solve is registration of gigapixel whole slide images (WSI).
This presents 3 challenges: (i) Images are very large; (ii) Thin sections
result in artifacts that make global affine registration prone to very large
local errors; (iii) Local affine registration is required to preserve correct
tissue morphology (local size, shape and texture). In our approach we compare
WSI registration based on automatic and manual feature selection on either the
full image or natural sub-regions (as opposed to square tiles). Working with
natural sub-regions, in an interactive tool makes it possible to exclude
regions containing scientifically irrelevant information. We also present a new
way to visualize local registration quality by a Registration Confidence Map
(RCM). With this method, intra-tumor heterogeneity and charateristics of the
tumor microenvironment can be observed and quantified.Comment: MICCAI2018 - Computational Pathology and Ophthalmic Medical Image
Analysis - COMPA