This manuscript extends the analysis of a much studied singularly perturbed
three-component reaction-diffusion system for front dynamics in the regime
where the essential spectrum is close to the origin. We confirm a conjecture
from a preceding paper by proving that the triple multiplicity of the zero
eigenvalue gives a Jordan chain of length three. Moreover, we simplify the
center manifold reduction and computation of the normal form coefficients by
using the Evans function for the eigenvalues. Finally, we prove the unfolding
of a Bogdanov-Takens bifurcation with symmetry in the model. This leads to
stable periodic front motion, including stable traveling breathers, and these
results are illustrated by numerical computations.Comment: 39 pages, 7 figure