research

Network Interdiction Using Adversarial Traffic Flows

Abstract

Traditional network interdiction refers to the problem of an interdictor trying to reduce the throughput of network users by removing network edges. In this paper, we propose a new paradigm for network interdiction that models scenarios, such as stealth DoS attack, where the interdiction is performed through injecting adversarial traffic flows. Under this paradigm, we first study the deterministic flow interdiction problem, where the interdictor has perfect knowledge of the operation of network users. We show that the problem is highly inapproximable on general networks and is NP-hard even when the network is acyclic. We then propose an algorithm that achieves a logarithmic approximation ratio and quasi-polynomial time complexity for acyclic networks through harnessing the submodularity of the problem. Next, we investigate the robust flow interdiction problem, which adopts the robust optimization framework to capture the case where definitive knowledge of the operation of network users is not available. We design an approximation framework that integrates the aforementioned algorithm, yielding a quasi-polynomial time procedure with poly-logarithmic approximation ratio for the more challenging robust flow interdiction. Finally, we evaluate the performance of the proposed algorithms through simulations, showing that they can be efficiently implemented and yield near-optimal solutions

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/08/2021