Breast cancer is the most diagnosed cancer and the most predominant cause of
death in women worldwide. Imaging techniques such as the breast cancer
pathology helps in the diagnosis and monitoring of the disease. However
identification of malignant cells can be challenging given the high
heterogeneity in tissue absorbotion from staining agents. In this work, we
present a novel approach for Invasive Ductal Carcinoma (IDC) cells
discrimination in histopathology slides. We propose a model derived from the
Inception architecture, proposing a multi-level batch normalization module
between each convolutional steps. This module was used as a base block for the
feature extraction in a CNN architecture. We used the open IDC dataset in which
we obtained a balanced accuracy of 0.89 and an F1 score of 0.90, thus
surpassing recent state of the art classification algorithms tested on this
public dataset.Comment: 4 pages, 5 figure