In the last few years, generative adversarial networks (GAN) have shown
tremendous potential for a number of applications in computer vision and
related fields. With the current pace of progress, it is a sure bet they will
soon be able to generate high-quality images and videos, virtually
indistinguishable from real ones. Unfortunately, realistic GAN-generated images
pose serious threats to security, to begin with a possible flood of fake
multimedia, and multimedia forensic countermeasures are in urgent need. In this
work, we show that each GAN leaves its specific fingerprint in the images it
generates, just like real-world cameras mark acquired images with traces of
their photo-response non-uniformity pattern. Source identification experiments
with several popular GANs show such fingerprints to represent a precious asset
for forensic analyses