research

Tensor-product coaction functors

Abstract

For a discrete group GG, we develop a `GG-balanced tensor product' of two coactions (A,δ)(A,\delta) and (B,ϵ)(B,\epsilon), which takes place on a certain subalgebra of the maximal tensor product AmaxBA\otimes_{\max} B. Our motivation for this is that we are able to prove that given two actions of GG, the dual coaction on the crossed product of the maximal-tensor-product action is isomorphic to the GG-balanced tensor product of the dual coactions. In turn, our motivation for this is to give an analogue, for coaction functors, of a crossed-product functor originated by Baum, Guentner, and Willett, and further developed by Buss, Echterhoff, and Willett, that involves tensoring an action with a fixed action (C,γ)(C,\gamma), then forming the image inside the crossed product of the maximal-tensor-product action. We prove that composing our tensor-product coaction functor with the full crossed product of an action reproduces the tensor-crossed-product functor of Baum, Guentner, and Willett. We prove that every such tensor-product coaction functor is exact, thereby recovering the analogous result for the tensor-crossed-product functors of Baum, Guentner, and Willett. When (C,γ)(C,\gamma) is the action by translation on (G)\ell^\infty(G), we prove that the associated tensor-product coaction functor is minimal, generalizing the analogous result of Buss, Echterhoff, and Willett for tensor-crossed-product functors.Comment: Minor revisio

    Similar works

    Full text

    thumbnail-image