We study a very young star-forming region in the outer Galaxy that is the
most concentrated source of outflows in the Spitzer Space Telescope GLIMPSE360
survey. This region, dubbed CMa-l224, is located in the Canis Major OB1
association. CMa-l224 is relatively faint in the mid-infrared, but it shines
brightly at the far-infrared wavelengths as revealed by the Herschel Space
Observatory data from the Hi-GAL survey. Using the 3.6 and 4.5 μm data from
the Spitzer/GLIMPSE360 survey, combined with the JHKs 2MASS and the 70-500
μm Herschel/Hi-GAL data, we develop a young stellar object (YSO) selection
criteria based on color-color cuts and fitting of the YSO candidates' spectral
energy distributions with YSO 2D radiative transfer models. We identify 293 YSO
candidates and estimate physical parameters for 210 sources well-fit with YSO
models. We select an additional 47 sources with GLIMPSE360-only photometry as
`possible YSO candidates'. The vast majority of these sources are associated
with high H2 column density regions and are good targets for follow-up
studies. The distribution of YSO candidates at different evolutionary stages
with respect to Herschel filaments supports the idea that stars are formed in
the filaments and become more dispersed with time. Both the supernova-induced
and spontaneous star formation scenarios are plausible in the environmental
context of CMa-l224. However, our results indicate that a spontaneous
gravitational collapse of filaments is a more likely scenario. The methods
developed for CMa-l224 can be used for larger regions in the Galactic plane
where the same set of photometry is available.Comment: Accepted for publication in the Astrophysical Journal Supplement
Series; 54 pages including appendice