research

Origin of High-Temperature Superconductivity in Compressed LaH10_{10}

Abstract

Room-temperature superconductivity has been one of the most challenging subjects in modern physics. Recent experiments reported that lanthanum hydride LaH10±x_{10{\pm}x} (xx<<1) raises a superconducting transition temperature TcT_{\rm c} up to {\sim}260 (or 215) K at high pressures around 190 (150) GPa. Here, based on first-principles calculations, we reveal the existence of topological Dirac-nodal-line (DNL) states in compressed LaH10_{10}. Remarkably, the DNLs protected by the combined inversion and time-reversal symmetry and the rotation symmetry create a van Hove singularity (vHs) near the Fermi energy, giving rise to large electronic density of states. Contrasting with other La hydrides containing cationic La and anionic H atoms, LaH10_{10} shows a peculiar characteristic of electrical charges with anionic La and both cationic and anionic H species, caused by a strong hybridization of the La ff and H ss orbitals. We find that a large number of electronic states at the vHs are strongly coupled to the H-derived high-frequency phonon modes that are induced via the unusual, intricate bonding network of LaH10_{10}, thereby yielding a high TcT_{\rm c}. Our findings not only elucidate the microscopic origin of the observed high-TcT_{\rm c} BCS-type superconductivity in LaH10_{10}, but also pave the route for achieving room-temperature topological superconductors in compressed hydrogen-rich compounds.Comment: 9 pages, 11 figure

    Similar works