research

Higgs stability-bound and fermionic dark matter

Abstract

Higgs-portal interactions of fermionic dark matter -- in contrast to fermions coupled via Yukawa interactions -- can have a stabilizing effect on the standard-model Higgs potential. A non-perturbative renormalization-group analysis reveals that, similar to higher-order operators in the Higgs potential itself, the fermionic portal coupling can increase the metastability scale by only about one order of magnitude. Furthermore, this regime of very weakly coupled dark matter is in conflict with relic-density constraints. Conversely, fermionic dark matter with the right relic abundance requires either a low cutoff scale of the effective field theory or a strongly interacting scalar sector. This results in a triviality problem in the scalar sector which persists at the non-perturbative level. The corresponding breakdown of the effective field theory suggests a larger dark sector to be present not too far above the dark-fermion mass-scale.Comment: 12 pages; 3 figure

    Similar works

    Full text

    thumbnail-image