research

Multielectron Ground State Electroluminescence

Abstract

The ground state of a cavity-electron system in the ultrastrong coupling regime is characterized by the presence of virtual photons. If an electric current flows through this system, the modulation of the light-matter coupling induced by this non-equilibrium effect can induce an extra-cavity photon emission signal, even when electrons entering the cavity do not have enough energy to populate the excited states. We show that this ground-state electroluminescence, previously identified in a single-qubit system [Phys. Rev. Lett. 116, 113601 (2016)] can arise in a many-electron system. The collective enhancement of the light-matter coupling makes this effect, described beyond the rotating wave approximation, robust in the thermodynamic limit, allowing its observation in a broad range of physical systems, from a semiconductor heterostructure with flat-band dispersion to various implementations of the Dicke model.Comment: 32 pages (9+23), 9 figures (3+6

    Similar works

    Full text

    thumbnail-image

    Available Versions