Most biological tissues grow by the synthesis of new material close to the
tissue's interface, where spatial interactions can exert strong geometric
influences on the local rate of growth. These geometric influences may be
mechanistic, or cell behavioural in nature. The control of geometry on tissue
growth has been evidenced in many in-vivo and in-vitro experiments, including
bone remodelling, wound healing, and tissue engineering scaffolds. In this
paper, we propose a generalisation of a mathematical model that captures the
mechanistic influence of curvature on the joint evolution of cell density and
tissue shape during tissue growth. This generalisation allows us to simulate
abrupt topological changes such as tissue fragmentation and tissue fusion, as
well as three dimensional cases, through a level-set-based method. The
level-set method developed introduces another Eulerian field than the level-set
function. This additional field represents the surface density of tissue
synthesising cells, anticipated at future locations of the interface. Numerical
tests performed with this level-set-based method show that numerical
conservation of cells is a good indicator of simulation accuracy, particularly
when cusps develop in the tissue's interface. We apply this new model to
several situations of curvature-controlled tissue evolutions that include
fragmentation and fusion.Comment: 15 pages, 10 figures, 3 supplementary figure