We find a direct relation between quiver representation theory and open
topological string theory on a class of toric Calabi-Yau manifolds without
compact four-cycles, also referred to as strip geometries. We show that various
quantities that characterize open topological string theory on these manifolds,
such as partition functions, Gromov-Witten invariants, or open BPS invariants,
can be expressed in terms of characteristics of the moduli space of
representations of the corresponding quiver. This has various deep
consequences; in particular, expressing open BPS invariants in terms of motivic
Donaldson-Thomas invariants, immediately proves integrality of the former ones.
Taking advantage of the relation to quivers we also derive explicit expressions
for classical open BPS invariants for an arbitrary strip geometry, which lead
to a large set of number theoretic integrality statements. Furthermore, for a
specific framing, open topological string partition functions for strip
geometries take form of generalized q-hypergeometric functions, which leads
to a novel representation of these functions in terms of quantum dilogarithms
and integral invariants. We also study quantum curves and A-polynomials
associated to quivers, various limits thereof, and their specializations
relevant for strip geometries. The relation between toric manifolds and quivers
can be regarded as a generalization of the knots-quivers correspondence to more
general Calabi-Yau geometries.Comment: 47 pages, 9 figure