research

Planting trees in graphs, and finding them back

Abstract

In this paper we study detection and reconstruction of planted structures in Erd\H{o}s-R\'enyi random graphs. Motivated by a problem of communication security, we focus on planted structures that consist in a tree graph. For planted line graphs, we establish the following phase diagram. In a low density region where the average degree λ\lambda of the initial graph is below some critical value λc=1\lambda_c=1, detection and reconstruction go from impossible to easy as the line length KK crosses some critical value f(λ)ln(n)f(\lambda)\ln(n), where nn is the number of nodes in the graph. In the high density region λ>λc\lambda>\lambda_c, detection goes from impossible to easy as KK goes from o(n)o(\sqrt{n}) to ω(n)\omega(\sqrt{n}), and reconstruction remains impossible so long as K=o(n)K=o(n). For DD-ary trees of varying depth hh and 2DO(1)2\le D\le O(1), we identify a low-density region λ<λD\lambda<\lambda_D, such that the following holds. There is a threshold h=g(D)ln(ln(n))h*=g(D)\ln(\ln(n)) with the following properties. Detection goes from feasible to impossible as hh crosses hh*. We also show that only partial reconstruction is feasible at best for hhh\ge h*. We conjecture a similar picture to hold for DD-ary trees as for lines in the high-density region λ>λD\lambda>\lambda_D, but confirm only the following part of this picture: Detection is easy for DD-ary trees of size ω(n)\omega(\sqrt{n}), while at best only partial reconstruction is feasible for DD-ary trees of any size o(n)o(n). These results are in contrast with the corresponding picture for detection and reconstruction of {\em low rank} planted structures, such as dense subgraphs and block communities: We observe a discrepancy between detection and reconstruction, the latter being impossible for a wide range of parameters where detection is easy. This property does not hold for previously studied low rank planted structures

    Similar works