research

Limits of Ordered Graphs and their Applications

Abstract

The emerging theory of graph limits exhibits an analytic perspective on graphs, showing that many important concepts and tools in graph theory and its applications can be described more naturally (and sometimes proved more easily) in analytic language. We extend the theory of graph limits to the ordered setting, presenting a limit object for dense vertex-ordered graphs, which we call an \emph{orderon}. As a special case, this yields limit objects for matrices whose rows and columns are ordered, and for dynamic graphs that expand (via vertex insertions) over time. Along the way, we devise an ordered locality-preserving variant of the cut distance between ordered graphs, showing that two graphs are close with respect to this distance if and only if they are similar in terms of their ordered subgraph frequencies. We show that the space of orderons is compact with respect to this distance notion, which is key to a successful analysis of combinatorial objects through their limits. We derive several applications of the ordered limit theory in extremal combinatorics, sampling, and property testing in ordered graphs. In particular, we prove a new ordered analogue of the well-known result by Alon and Stav [RS\&A'08] on the furthest graph from a hereditary property; this is the first known result of this type in the ordered setting. Unlike the unordered regime, here the random graph model G(n,p)G(n, p) with an ordering over the vertices is \emph{not} always asymptotically the furthest from the property for some pp. However, using our ordered limit theory, we show that random graphs generated by a stochastic block model, where the blocks are consecutive in the vertex ordering, are (approximately) the furthest. Additionally, we describe an alternative analytic proof of the ordered graph removal lemma [Alon et al., FOCS'17].Comment: Added a new application: An Alon-Stav type result on the furthest ordered graph from a hereditary property; Fixed and extended proof sketch of the removal lemma applicatio

    Similar works

    Full text

    thumbnail-image

    Available Versions