research

Quantum Metrology in the Kerr Metric

Abstract

A surprising feature of the Kerr metric is the anisotropy of the speed of light. The angular momentum of a rotating massive object causes co- and counter-propagating light paths to move at faster and slower velocities, respectively as determined by a far-away clock. Based on this effect we derive ultimate quantum limits for the measurement of the Kerr rotation parameter aa using a interferometric set up. As a possible implementation, we propose a Mach-Zehnder interferometer to measure the "one-way height differential" time effect. We isolate the effect by calibrating to a dark port and rotating the interferometer such that only the direction dependent Kerr-metric induced phase term remains. We transform to the Zero Angular Momentum Observer (ZAMO) flat metric where the observer see c=1c=1. We use this metric and the Lorentz transformations to calculate the same Kerr phase shift. We then consider non-stationary observers moving with the planet's rotation, and find a method for cancelling the additional phase from the classical relative motion, thus leaving only the curvature induced phase.Comment: 9 pages, 7 figures, closest to published versio

    Similar works

    Full text

    thumbnail-image