research

Multimessenger Parameter Estimation of GW170817

Abstract

We combine gravitational wave (GW) and electromagnetic (EM) data to perform a Bayesian parameter estimation of the binary neutron star (NS) merger GW170817. The EM likelihood is constructed from a fit to a large number of numerical relativity simulations which we combine with a lower bound on the mass of the remnant's accretion disk inferred from the modeling of the EM light curve. In comparison with previous works, our analysis yields a more precise determination of the tidal deformability of the binary, for which the EM data provide a lower bound, and of the mass ratio of the binary, with the EM data favoring a smaller mass asymmetry. The 90\% credible interval for the areal radius of a 1.4 M⊙1.4\ M_\odot NS is found to be 12.2−0.8+1.0±0.2 km12.2^{+1.0}_{-0.8} \pm 0.2\ {\rm km} (statistical and systematic uncertainties).Comment: 7 pages, 3 figures, accepted to the EPJA Topical Issue: The first Neutron Star Merger Observation - Implications for Nuclear Physic

    Similar works