research

Algorithmic information and incompressibility of families of multidimensional networks

Abstract

This article presents a theoretical investigation of string-based generalized representations of families of finite networks in a multidimensional space. First, we study the recursive labeling of networks with (finite) arbitrary node dimensions (or aspects), such as time instants or layers. In particular, we study these networks that are formalized in the form of multiaspect graphs. We show that, unlike classical graphs, the algorithmic information of a multidimensional network is not in general dominated by the algorithmic information of the binary sequence that determines the presence or absence of edges. This universal algorithmic approach sets limitations and conditions for irreducible information content analysis in comparing networks with a large number of dimensions, such as multilayer networks. Nevertheless, we show that there are particular cases of infinite nesting families of finite multidimensional networks with a unified recursive labeling such that each member of these families is incompressible. From these results, we study network topological properties and equivalences in irreducible information content of multidimensional networks in comparison to their isomorphic classical graph.Comment: Extended preprint version of the pape

    Similar works

    Full text

    thumbnail-image

    Available Versions