This article presents a theoretical investigation of string-based generalized
representations of families of finite networks in a multidimensional space.
First, we study the recursive labeling of networks with (finite) arbitrary node
dimensions (or aspects), such as time instants or layers. In particular, we
study these networks that are formalized in the form of multiaspect graphs. We
show that, unlike classical graphs, the algorithmic information of a
multidimensional network is not in general dominated by the algorithmic
information of the binary sequence that determines the presence or absence of
edges. This universal algorithmic approach sets limitations and conditions for
irreducible information content analysis in comparing networks with a large
number of dimensions, such as multilayer networks. Nevertheless, we show that
there are particular cases of infinite nesting families of finite
multidimensional networks with a unified recursive labeling such that each
member of these families is incompressible. From these results, we study
network topological properties and equivalences in irreducible information
content of multidimensional networks in comparison to their isomorphic
classical graph.Comment: Extended preprint version of the pape