In this paper, we present our approach for solving the DEBS Grand Challenge
2018. The challenge asks to provide a prediction for (i) a destination and the
(ii) arrival time of ships in a streaming-fashion using Geo-spatial data in the
maritime context. Novel aspects of our approach include the use of ensemble
learning based on Random Forest, Gradient Boosting Decision Trees (GBDT),
XGBoost Trees and Extremely Randomized Trees (ERT) in order to provide a
prediction for a destination while for the arrival time, we propose the use of
Feed-forward Neural Networks. In our evaluation, we were able to achieve an
accuracy of 97% for the port destination classification problem and 90% (in
mins) for the ETA prediction