Hybrid analog-digital precoding significantly reduces the hardware costs in
massive MIMO transceivers when compared to fully-digital precoding at the
expense of increased transmit power. In order to mitigate the above shortfall,
we use the concept of constructive interference-based precoding, which has been
shown to offer significant transmit power savings when compared with the
conventional interference suppression-based precoding in fully-digital
multiuser MIMO systems. Moreover, in order to circumvent the potential
quality-of-service degradation at the users due to the hardware impairments in
the transmitters, we judiciously incorporate robustness against such
vulnerabilities in the precoder design. Since the undertaken constructive
interference-based robust hybrid precoding problem is nonconvex with infinite
constraints and thus difficult to solve optimally, we decompose the problem
into two subtasks, namely, analog precoding and digital precoding. In this
paper, we propose an algorithm to compute the optimal constructive
interference-based robust digital precoders. Furthermore, we devise a scheme to
facilitate the implementation of the proposed algorithm in a low-complexity and
distributed manner. We also discuss block-level analog precoding techniques.
Simulation results demonstrate the superiority of the proposed algorithm and
its implementation scheme over the state-of-the-art methods