research

On a Kelvin-Voigt Viscoelastic Wave Equation with Strong Delay

Abstract

An initial-boundary value problem for a viscoelastic wave equation subject to a strong time-localized delay in a Kelvin & Voigt-type material law is considered. Transforming the equation to an abstract Cauchy problem on the extended phase space, a global well-posedness theory is established using the operator semigroup theory both in Sobolev-valued C0C^{0}- and BV-spaces. Under appropriate assumptions on the coefficients, a global exponential decay rate is obtained and the stability region in the parameter space is further explored using the Lyapunov's indirect method. The singular limit τ0\tau \to 0 is further studied with the aid of the energy method. Finally, a numerical example from a real-world application in biomechanics is presented.Comment: 34 pages, 4 figures, 1 set of Matlab code

    Similar works