Recently it has been shown that the complexity of SU(n) operator is
determined by the geodesic length in a bi-invariant Finsler geometry, which is
constrained by some symmetries of quantum field theory. It is based on three
axioms and one assumption regarding the complexity in continuous systems. By
relaxing one axiom and an assumption, we find that the complexity formula is
naturally generalized to the Schatten p-norm type. We also clarify the
relation between our complexity and other works. First, we show that our
results in a bi-invariant geometry are consistent with the ones in a
right-invariant geometry such as k-local geometry. Here, a careful analysis
of the sectional curvature is crucial. Second, we show that our complexity can
concretely realize the conjectured pattern of the time-evolution of the
complexity: the linear growth up to saturation time. The saturation time can be
estimated by the relation between the topology and curvature of SU(n) groups.Comment: Modified the Sec. 4.1, where we offered a powerful proof: if (1) the
ket vector and bra vector in quantum mechanics contain same physics, or (2)
adding divergent terms to a Lagrangian will not change underlying physics,
then complexity in quantum mechanics must be bi-invariant