research

When fast diffusion and reactive growth both induce accelerating invasions

Abstract

We focus on the spreading properties of solutions of monostable equations with fast diffusion. The nonlinear reaction term involves a weak Allee effect, which tends to slow down the propagation. We complete the picture of [3] by studying the subtle case where acceleration does occur and is induced by a combination of fast diffusion and of reactive growth. This requires the construction of new elaborate sub and supersolutions thanks to some underlying self-similar solutions

    Similar works