In this paper, distributed energy management of interconnected microgrids,
which is stated as a dynamic economic dispatch problem, is studied. Since the
distributed approach requires cooperation of all local controllers, when some
of them do not comply with the distributed algorithm that is applied to the
system, the performance of the system might be compromised. Specifically, it is
considered that adversarial agents (microgrids with their controllers) might
implement control inputs that are different than the ones obtained from the
distributed algorithm. By performing such behavior, these agents might have
better performance at the expense of deteriorating the performance of the
regular agents. This paper proposes a methodology to deal with this type of
adversarial agents such that we can still guarantee that the regular agents can
still obtain feasible, though suboptimal, control inputs in the presence of
adversarial behaviors. The methodology consists of two steps: (i) the
robustification of the underlying optimization problem and (ii) the
identification of adversarial agents, which uses hypothesis testing with
Bayesian inference and requires to solve a local mixed-integer optimization
problem. Furthermore, the proposed methodology also prevents the regular agents
to be affected by the adversaries once the adversarial agents are identified.
In addition, we also provide a sub-optimality certificate of the proposed
methodology.Comment: 8 pages, Conference on Decision and Control (CDC) 201