Quantum communication is a holy grail to achieve secure communication among a
set of partners, since it is provably unbreakable by physical laws. Quantum
sensing employs quantum entanglement as an extra resource to determine
parameters by either using less resources or attaining a precision unachievable
in classical protocols. A paradigmatic example is the quantum radar, which
allows one to detect an object without being detected oneself, by making use of
the additional asset provided by quantum entanglement to reduce the intensity
of the signal. In the optical regime, impressive technological advances have
been reached in the last years, such as the first quantum communication between
ground and satellites, as well as the first proof-of-principle experiments in
quantum sensing. The development of microwave quantum technologies turned out,
nonetheless, to be more challenging. Here, we will discuss the challenges
regarding the use of microwaves for quantum communication and sensing. Based on
this analysis, we propose a roadmap to achieve real-life applications in these
fields.Comment: Long version of the article published in the Proceeding