research

Runtime-guided management of stacked DRAM memories in task parallel programs

Abstract

Stacked DRAM memories have become a reality in High-Performance Computing (HPC) architectures. These memories provide much higher bandwidth while consuming less power than traditional off-chip memories, but their limited memory capacity is insufficient for modern HPC systems. For this reason, both stacked DRAM and off-chip memories are expected to co-exist in HPC architectures, giving raise to different approaches for architecting the stacked DRAM in the system. This paper proposes a runtime approach to transparently manage stacked DRAM memories in task-based programming models. In this approach the runtime system is in charge of copying the data accessed by the tasks to the stacked DRAM, without any complex hardware support nor modifications to the application code. To mitigate the cost of copying data between the stacked DRAM and the off-chip memory, the proposal includes an optimization to parallelize the copies across idle or additional helper threads. In addition, the runtime system is aware of the reuse pattern of the data accessed by the tasks, and can exploit this information to avoid unworthy copies of data to the stacked DRAM. Results on the Intel Knights Landing processor show that the proposed techniques achieve an average speedup of 14% against the state-of-the-art library to manage the stacked DRAM and 29% against a stacked DRAM architected as a hardware cache.This work has been supported by the RoMoL ERC Advanced Grant (GA 321253), by the European HiPEAC Network of Excellence, by the Spanish Ministry of Economy and Competitiveness (contract TIN2015-65316-P), by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272) and by the European Union’s Horizon 2020 research and innovation programme (grant agreement 779877). M. Moreto has been partially supported by the Spanish Ministry of Economy, Industry and Competitiveness under Ramon y Cajal fellowship number RYC-2016-21104.Peer ReviewedPostprint (author's final draft

    Similar works