thesis

Representation of statistical sound properties in human auditory cortex

Abstract

The work carried out in this doctoral thesis investigated the representation of statistical sound properties in human auditory cortex. It addressed four key aspects in auditory neuroscience: the representation of different analysis time windows in auditory cortex; mechanisms for the analysis and segregation of auditory objects; information-theoretic constraints on pitch sequence processing; and the analysis of local and global pitch patterns. The majority of the studies employed a parametric design in which the statistical properties of a single acoustic parameter were altered along a continuum, while keeping other sound properties fixed. The thesis is divided into four parts. Part I (Chapter 1) examines principles of anatomical and functional organisation that constrain the problems addressed. Part II (Chapter 2) introduces approaches to digital stimulus design, principles of functional magnetic resonance imaging (fMRI), and the analysis of fMRI data. Part III (Chapters 3-6) reports five experimental studies. Study 1 controlled the spectrotemporal correlation in complex acoustic spectra and showed that activity in auditory association cortex increases as a function of spectrotemporal correlation. Study 2 demonstrated a functional hierarchy of the representation of auditory object boundaries and object salience. Studies 3 and 4 investigated cortical mechanisms for encoding entropy in pitch sequences and showed that the planum temporale acts as a computational hub, requiring more computational resources for sequences with high entropy than for those with high redundancy. Study 5 provided evidence for a hierarchical organisation of local and global pitch pattern processing in neurologically normal participants. Finally, Part IV (Chapter 7) concludes with a general discussion of the results and future perspectives

    Similar works