research

A data-driven model for valve stiction

Abstract

The presence of nonlinearities, e.g., striction, hysteresis and backlash in a control valve limits the control loop performance. Striction is the most common problem in spring-diaphragm type valves, which are widely used in the process industry. Though there have been many attempts (EnTech, 1998; Gerry and Ruel, 2001; Horch and Isaksson, 1998; Taha et al., 1996; Piipponen, 1996; McMillan, 1995) to understand the stiction phenomena and model it, there is a lack of a proper model which can be understood and related directly to the practical situation as observed in a real valve in the process industry. This study focuses on the understanding, from real life data, of the mechanism that causes stiction and proposes a new data-driven model of stiction, which can be directly related to real valves. It compares simulation results generated using the proposed model with industrial data

    Similar works