CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Performance of T-shape barriers with top surface covered with absorptive quadratic residue diffusers
Authors
YW Lam
M Monazzam
Publication date
1 February 2008
Publisher
'Elsevier BV'
Doi
Abstract
A previous paper [Applied Acoustics 66 (2005) 709–730] has shown that adding a quadratic residue diffuser (QRD) to the top of a T-shape barrier can provide better barrier performance than an equivalent purely absorptive barrier. In here, we extend the study to look at the performance when a QRD is made absorptive. This paper presents an investigation on the acoustic performance of a few welled-diffusers with different absorption ability on top of a T-shape noise barrier. The absorption properties of the diffusers are modified with different sequences, by filling the wells with fiberglass, by covering the well entrance with wire meshes, and by putting perforated sheet either on the top surface or inside the wells. A 2D Boundary Element Method (BEM) is used to calculate the barrier insertion loss. The numerical and experimental results on diffuser barriers with rigid and absorptive covers are compared. Among the tested models the best method of treating diffuser barriers with absorbent agents in the QRD is found to be a perorated sheet on top or inside the diffuser wells. It is found that increasing the absorption ability of QRD by fiberglass or high resistance wire meshes has negative effect on the efficiency of a QRD barrier. It is shown that, if the increase in absorption destroys the effect of resonance in wells, it will also have negative effect on the insertion loss performance of the QRD edge barrier. © Elsevier Ltd. All rights reserved
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
University of Salford Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:salford-repository.worktri...
Last time updated on 06/06/2023