Low temperature investigation of electrical conduction in polysilicon: simulation and experiment

Abstract

51-54Nanograin polysilicon low temperature stochastic Coulomb oscillations Monte Carlo simulationInvestigation of electrical conduction in polysilicon nanowires (polySiNW) with nanograins (5 to 20nm), based on Monte Carlo (MC) simulations and electrical measurements from 4K to 300K are presented. Some irregular Coulomb Oscillations (CO) are observed at temperatures lower than 200K showing several period widths due to the random distribution in grain size (5-20nm). A remarkable result consists in more effective oscillations observed at intermediate range of temperatures (between 25K and 150K) and high drain voltages. The temperature dependence of COs is explained by the fact that in a multiple asymmetric dot system at low temperature, COs are observed not at the lowest but at an intermediate temperature range, whereas the drain voltage dependence is due to an enhanced non-resonant tunneling. MC simulations have confirmed experimental observations

    Similar works