research

CFD modelling of buoyancy-driven natural ventilation opposed by wind

Abstract

This paper presents CFD simulations of natural displacement ventilation airflows in which the buoyancy force produced by a heat source is opposed by a wind force. Cases investigated focus on windbuoyancy force relationships for which a two-layer stratification is maintained. CFD predictions of the position of the interface separating the two layers and the change in reduced gravity (temperature difference) between them are compared with the analytical work and salt-bath measurements of Hunt and Linden (2000, 2005). Comparisons are good with only minor discrepancies in the interface position and a small under-prediction of the upper layer reduced gravity

    Similar works