In this paper, a new method is proposed by combining ensemble empirical mode decomposition (EEMD) with order tracking techniques to analyse the vibration signals from a two stage helical gearbox. The method improves EEMD results in that it overcomes the potential deficiencies and achieves better order spectrum representation for fault diagnosis. Based on the analysis, a diagnostic feature is designed based on the order spectra of extracted IFMs for detection and separation of gearbox faults. Experimental results show this feature is sensitive to different fault severities and robust to the influences from operating conditions and remote sensor locations