Role of the neurotrophic factor receptor RET in haematopoiesis

Abstract

Tese de doutoramento, Ciências Biomédicas (Imunologia), Universidade de Lisboa, Faculdade de Medicina, 2013Haematopoiesis is a developmental process that ensures the generation of all blood cell lineages throughout life. As a consequence, this is a highly complex and dynamic developmental cascade subject to tight regulatory mechanisms. Thus, the study of novel molecular signals is critical to further understand how haematopoiesis operates to ensure the balance between cell lineage commitment, cell homeostasis and efficient haematopoietic responses to insults and disturbances. The tyrosine kinase RET is the receptor for the GDNF (glial cell line-derived neurotrophic factor) neurotrophic factor family (GDNF family ligands – GFLs). Productive RET signalling controls the development and maintenance of the enteric nervous system, kidneys and spermatogenesis. Interestingly, Ret expression was detected in haematopoietic cells and lymphoid organs and RET signalling was shown to regulate enteric lymphoid organogenesis. However the role of RET in haematopoiesis remains completely unexplored. Haematopoietic stem cells (HSCs) are at the onset of the developmental cascade that generate all blood cells, thus we initially investigated the role of RET in HSC function and how modulation of RET signalling can be used to control HSC responses. Finally, we investigated the role of RET in late stages of haematopoietic cell precursor differentiation into the T cell lineage. We found that the tyrosine kinase RET is critical to HSC survival and function. HSCs express RET signalling molecules and HSCs microenvironment provides RET ligands. Moreover Ret ablation leads to reduced HSC numbers and recruitment of quiescent cells into proliferation. Although RET null progenitors have normal differentiation potential, they exhibit impaired in vivo stress response and reconstitution potential. Remarkably RET downstream signalling results in p38/MAP kinase phosphorylation and CREB transcription factor activation, providing HSCs with critical surviving cues. In agreement, recue of Ret null progenitors was efficiently achieved in vivo by forcing the expression of RET downstream targets, Bcl2 or Bcl2l1. Thus, RET activation improves HSC survival and in vivo transplantation efficiency, unveiling exciting new possibilities in transplantation and HSC ex vivo expansion. In addition, our work demonstrates that HSC use neurotrophic factors to regulate and maintain their fitness. RET signalling molecules are also expressed in thymocytes, more specifically, we found their expression in CD4/CD8 double negative thymocytes (DN). Nevertheless, ablation of Ret or it co-receptors Gfra1 and Gfra2 had a minor impact in foetal thymopoiesis. In agreement, Ret conditional knockout mice had similar thymocyte development and fitness when compared to their WT counterparts. Thus, while RET signalling is critical to HSC function, it is dispensable for T cell development in vivo. Altogether, our work show that molecular mechanisms usually assigned to specific tissues, can be more widely used by unrelated cell types, such as haematopoietic stem cells. Our findings also illustrate how a same signalling pathway can be regulated to originate different cell responses. Unlike several neuronal populations that use GFLs depending on the specific expressed co-receptor, HSCs express multiple RET coreceptors and respond to GFLs in a redundant fashion. There is increasing evidence that nervous signals can control haematopoiesis, namely by regulating osteoblast and mesenchymal stem cell function in HSC niches. Herein, we show that neurons and HSC employ common regulatory mechanisms. Thus, our work paves the way to further studies employing neurotrophic factors in HSC expansion and transplantation protocols.O sistema hematopoiético, que inclui as células do sistema imunitário, é altamente complexo e dinâmico, e como tal, está sujeito a uma regulação apertada. Assim, o estudo dos mecanismos moleculares responsáveis pelo desenvolvimento de células hematopoiéticas é essencial para compreender a forma como este sistema funciona de modo a manter o equilíbrio entre o número de células necessárias em homeostasia e uma rápida resposta em situações de desequilíbrio. A tirosina cinase RET é o receptor para os factores neurotróficos da família do GDNF (glial cell line-derived neurotrophic factor) (GDNF family ligands – GFLs) e tem uma função crucial no desenvolvimento e manutenção do sistema nervoso, no desenvolvimento embrionário do rim e na espermatogénese. Curiosamente, a expressão de Ret já foi detectada em várias populações de células hematopoiéticas e em órgãos linfoides primários como o fígado fetal, a medula óssea e o timo. Para além disso, foi também demonstrado um papel crucial da sinalização por RET em células hematopoiéticas envolvidas na organogénese das placas de Peyer no intestino durante a vida embrionária. No entanto, apesar de a expressão de RET ter sido identificada em várias populações celulares, uma possível função de RET no desenvolvimento ou função de células hematopoiéticas não é ainda conhecida. As células estaminais hematopoiéticas, pelas suas capacidades de autorrenovação e proliferação, são a base do programa de desenvolvimento e diferenciação que origina todas as células do sangue. Por este motivo, é crucial compreender os complexos mecanismos que regulam as células estaminais hematopoiéticas. Assim, no laboratório estamos particularmente interessados no papel de RET na função das células estaminais hematopoiéticas e no modo como a sinalização por RET pode ser usada de forma a modular a sua resposta em situações de desequilíbrio como a transplantação. Uma vez que foi proposto um efeito do ligando de RET GDNF na sobrevivência de timócitos in vitro, estamos também interessados em compreender a função de RET no desenvolvimento de células T in vivo. O timo é responsável pela produção de todas as populações de células T, que são essenciais para respostas imunitárias eficientes. Como tal é indispensável perceber de que modo o microambiente tímico fornece uma complexa rede de sinais que levam ao desenvolvimento de células T a partir de precursores da medula óssea. No laboratório descobrimos que a tirosina cinase RET tem uma função crítica na sobrevivência e função das células estaminais hematopoiéticas. Estas expressam a maquinaria de sinalização por RET, que inclui o receptor RET e os seus co-receptores, enquanto o microambiente onde as células estaminais hematopoéticas se encontram providencia os ligandos de RET necessários. Para além disso, a ablação de Ret leva à redução do número de células estaminais hematopoiéticas e ao recrutamento de células quiescentes para o estado proliferativo. Apesar de os progenitores hematopoiéticos deficientes em RET terem um potencial de diferenciação normal, apresentam uma fraca resposta ao stresse in vivo e um potencial de reconstituição reduzido. Importante, a sinalização de RET fornece factores de sobrevivência às células estaminais hematopoiéticas, por a jusante resultar na fosforilação da cinase p38/MAPK e na activação do factor de transcrição CREB. Em concordância, a sobreexpressão dos genes alvo a jusante de RET, Bcl2 ou Bcl2l1, resgata in vivo a função hematopoiética de progenitores deficientes em Ret, aumentado o seu potencial te transplantação. Na verdade, a activação de RET aumenta a sobrevivência de células estaminais hematopoiéticas e a sua eficiência de transplantação in vivo, revelando novas possibilidades de intervenção em terapias de transplantação e expansão ex vivo de células estaminais hematopoiéticas. Assim, o nosso trabalho mostra que factores neurotróficos presentes no nicho das células estaminais hematopoiéticas regulam a sua função através do receptor RET. Embora tenhamos confirmado que as moléculas envolvidas na sinalização de RET são expressas no timo, especialmente na população de timócitos negativa para os coreceptores CD4 e CD8 (DN), a remoção de Ret ou dos seus co-receptores Gfra1 ou Gfra2 não afecta a timopoiese fetal. Concordantemente, animais adultos com eliminação condicional de Ret em timócitos revelam que a capacidade de desenvolvimento de timócitos deficientes em Ret é semelhante à dos controlos selvagens. Do mesmo modo mutações que conferem um ganho de função no receptor RET não influenciam o desenvolvimento tímico. Assim, apesar de a sinalização por RET poder fornecer sinais de sobrevivência a timócitos, esta é dispensável para o desenvolvimento de células T in vivo, mesmo em condições de competição entre progenitores deficientes ou competentes em Ret. No seu conjunto, o nosso trabalho demonstra que mecanismos moleculares geralmente atribuídos a tecidos específicos, podem ser mais amplamente utilizado por tipos de células não relacionadas, tais como células estaminais hematopoiéticas. Os nossos resultados também ilustram como uma mesma via de sinalização pode ser 3 regulada de forma a originar diferentes respostas celulares. Contrariamente a diversas populações de neurónios, que usam GFLs específicos dependendo do coreceptor que expressam, as HSCs expressam múltiplos coreceptores de RET respondem aos GFLs de forma redundante. Existem cada vez mais evidências de que os sinais provenientes do sistema nervoso podem controlar hematopoiese, nomeadamente através da regulação da função dos osteoblastos e células estaminais mesenquimais presentes nos nichos das HSCs. Surpreendentemente, nós mostramos que os neurônios e as HSCs utilizam mecanismos comuns de regulação.. Deste modo, o nosso trabalho abre caminho a novos estudos na utilização factores neurotróficos em protocolos de expansão e transplantação de HSCs

    Similar works