Experimental Validation of Contact Dynamics for In-Hand Manipulation

Abstract

This paper evaluates state-of-the-art contact models at predicting the motions and forces involved in simple in-hand robotic manipulations. In particular it focuses on three primitive actions—linear sliding, pivoting, and rolling—that involve contacts between a gripper, a rigid object, and their environment. The evaluation is done through thousands of controlled experiments designed to capture the motion of object and gripper, and all contact forces and torques at 250 Hz. We demonstrate that a contact modeling approach based on Coulomb’s friction law and maximum energy principle is effective at reasoning about interaction to first order, but limited for making accurate predictions. We attribute the major limitations to (1) the non-uniqueness of force resolution inherent to grasps with multiple hard contacts of complex geometries, (2) unmodeled dynamics due to contact compliance, and (3) unmodeled geometries due to manufacturing defects. Keywords: Contact Force, Contact Model, Grasp Object, Contact Compliance, Grip Force Increas

    Similar works

    Full text

    thumbnail-image

    Available Versions