Phases of driven two-level systems with nonlocal dissipation

Abstract

We study an array of two-level systems arranged on a lattice and illuminated by an external plane wave which drives a dipolar transition between the two energy levels. In this set up, the two-level systems are coupled by dipolar interactions and subject to nonlocal dissipation, so behave as an open many-body quantum system. We investigate the long-time dynamics of the system at the mean-field level, and use this to determine a phase diagram as a function of external drive and detuning. We find a multitude of phases including antiferromagnetism, spin density waves, oscillations and phase bistabilities. We investigate these phases in more detail and explain how nonlocal dissipation plays a role in the long-time dynamics. Furthermore, we discuss what features would survive in the full quantum description

    Similar works