research

Microstructural optimization of unalloyed ductile cast irons with a ferritic matrix used in the manufacture of wind turbine rotors

Abstract

The aim of this work was the microstructural optimization of cast irons with nodular graphite for the manufacture of wind turbine hubs, paying preferential attention to the geometry and distribution of graphite spheroids to ensure the required mechanical properties for this application. The target was pursued based upon microstructure-properties correlation, in an environment of great competitiveness and exigency marked by current international standards. The methodology followed consisted of the generation of knowledge from tailor-made industrial castings, followed by the analysis of their microstructures, in order to extract valuable conclusions for the production process through the use of statistical analysis. The approach method employed was a Fractional Design of Experiments (DOE) with 7 factors, 16 experiments and resolution IV. The samples from each experiment were cubes of identical geometry, and designed to match a surface-to-volume module equal to 4 cm (1.57 in) found as the highest values in real hubs of 3 MW power wind turbines. It is concluded that the use of nodulizers with traces of lanthanum favour the reduction of the volume fraction of pearlite, although La has proved not to promote the spherical shape of primary graphite. The negative effect of pre-inoculants containing SiC on the spheroidal morphology of graphite has also been verified, and also that low-Mn bearing scrap favours graphite formation and the reduction of the volume fraction of pearlite, in spite of being a carbide forming element. The whitening effect of Mn was minimized with low carbon equivalent melts

    Similar works