Conversion of Small Modular Reactors Fuel to Use Mixed (U-Th)O2 Fuel

Abstract

The concept of Integral Small Modular Reactor (SMR) isn’t new but it seems that the proper time for using this idea has been coming. According to the International Atomic Energy Agency (IAEA), the reactors with electrical power lower than 300 MW have been defined as small reactors, although SMRs are categorized by this fact that more advantages and design features are attained when intentionally make reactors small. In fact, these reactors use their size as advantage to attain more design purposes. The scalability, modularity, improved safety characteristics and more important than other, lower up-front cost of the SMRs, offer great advantages over large common nuclear power plants. According to the IAEA reports there are many interests all over the world to move toward using of these kinds of reactors. There are many different type of SMRs under various stages of design, licensing and construction. Nowadays, there are many initiatives to use thorium in nuclear reactors and fuel cycles. Thorium is three times more abundance than Uranium, however, despite of several initiatives and researches on Th-232 utilization in many types of reactors, this fuel hasn’t been commercialized yet. Most of The SMRs have been designed to have long cycle, so they must use a lot of poisoning material in the beginning of the cycle. Taking in the account that Thorium can be used as a absorber in the beginning of the cycle and also be used as a fertile material during the cycle, it seems to be a good option to use mixed (U-Th)O2 as SMR’s fuel. This paper briefly is going to review the research about Thorium utilization as a nuclear fuel and the possibilities of using mixed (U-Th)O2 fuel as an alternative option for SMRs fuel. The Korean System Integrated Modular Advanced Reactor (SMART) categorized as SMR that has received its standard design approval, was chosen as reference core for our calculations. The calculations have been performed by MCNPX code as a well-known Monte Carlo code. Geometry and all materials were kept the same as the SMART core, and the only variable was the fuel pin material, in which we use several mass proportion of uranium and thorium but keeping the enrichment in U-235, lower than 5 wt%. The results confirm that it’s possible to use mixed (U-Th)O2 with lower burnable absorber at the beginning of the cycle and have a longer burnup cycle

    Similar works