Selective determination of poly(styrene) and polyolefin microplastics in sandy beach sediments by gel permeation chromatography coupled with fluorescence detection

Abstract

Microplastics generated by plastics waste degradation are ubiquitous in marine and freshwater basins, posing serious environmental concerns. Raman and FTIR spectroscopies, along with techniques such as pyrolysis-GC/MS, are typically used for their identification. We present a procedure based on gel permeation chromatography (GPC) coupled with fluorescence detection for semi-quantitative selective determination of the most common microplastics found in marine shoreline sediments: poly(styrene) (PS) and partially degraded polyolefins (LDPEox). By operating the detector at either 260/280 or 370/420 nm excitation/emission wavelengths PS can be distinguished from LDPEox upon GPC separation. Semi-quantitative determination of microplastics contents is also possible: dichloromethane extracts of PS and LDPEox yield linear plots of fluorescence peak area vs concentration (0-5.0 mg/mL range) and were used as reference materials for quantification of the plastics content in sand samples collected in the winter berm and dune sectors of a Tuscany beach in Italy

    Similar works