Accuracy Assessment on Unmanned Aerial System Derived Digital Surface Models

Abstract

Small unmanned aerial systems (UAS) represent a cost-effective strategy for topographic surveys. These low-cost drones can provide useful information for 3D reconstruction even if they are equipped with a low-quality navigation system. To ensure the production of high-quality topographic models, careful consideration of flight mode and proper distribution of ground control points is required. To this end a commercial drone has been adopted to monitor a small earthen dam using different combinations of flight configurations and adopting a variable number of ground control points (GCPs). Results highlighted that both choice and combination of flight plans can reduce the relative error of the 3D model up to a few meters without the need of including GCPs. The use of GCPs allows the quality of topographic survey to be greatly improved, reducing error to the order of a few centimeters. In particular, the combined use of images extracted from two flights, one with a camera mounted at nadir and the second with a 20° angle, proves extremely beneficial to increase the overall accuracy of the 3D model and especially of the vertical precision

    Similar works