Forest management-consideration of multiple objectives

Abstract

In Canada, as a major forested country, forest resources provide significant environmental, social, and economic values. Hence, consideration of multiple often-conflicting criteria in forest management planning has become a necessity rather than a special case. Since 2013, a new forest management regime came to effect in the province of Quebec, Canada where the Ministry of Forests, Fauna, and Parks (MFFP) became responsible for preparing and implementing integrated forest development plans. In order for the MFFP to take local needs and goals into account usually multiple objectives need to be targeted. So, the main objective of this thesis is to analyze and to propose new business models for forest management planning addressing several key factors. The first part of the thesis includes a review of a number of planning methods and decision support systems for tactical decisions in the forest-based value creation network. In the second part of the thesis, we have proposed a multi-objective optimization model for the problem of selection of harvest areas and allocation of timber to wood-processing mills over 5-year planning horizon. This model has been used to analyze a tactical forest management plan in Quebec. The forest management unit 07451 inside region 7, Outaouais in western Québec was considered as our case study. The solution of the proposed multi-objective model was compared with the traditional cost minimization strategy. Also, the impacts of logistics constraints were assessed. Finally, in the third part of the thesis we have proposed a planning support tool to group the harvest areas in a way that the spatial dispersion of the clusters is reduced, meaning the logistics of moving the machinery between areas in each cluster becomes more efficient. The results from the three parts of the thesis have demonstrated that simultaneous consideration of some important objectives in the tactical forest management could lead to a more balanced and economically sustainable plan, in addition systematical cluterization of harvest areas will reduce the spatial dispersion of the harvest areas that a typical harvesting team has to cut, which consequently reduce the time and cost of movement of harvesting machineries among the areas for the team. In general, the work in this thesis can support an efficient forest management plan considering multiple objectives and minimizing the spatial dispersion of harvest areas that a harvesting team would cut. The optimization models and approaches proposed in this thesis are novel and practical for the forest management planning problems

    Similar works