research
Joint Sentinel-1 and SMAP Data Assimilation to Improve Soil Moisture Estimates
- Publication date
- Publisher
Abstract
SMAP (Soil Moisture Active and Passive) radiometer observations at 40 km resolution are routinely assimilated into the NASA Catchment Land Surface Model to generate the 9-km SMAP Level-4 Soil Moisture product. This study demonstrates that adding high-resolution radar observations from Sentinel-1 to the SMAP assimilation can increase the spatio-temporal accuracy of soil moisture estimates. Radar observations were assimilated either separately from or simultaneously with radiometer observations. Assimilation impact was assessed by comparing 3-hourly, 9-km surface and root-zone soil moisture simulations with in situ measurements from 9-km SMAP core validation sites and sparse networks, from May 2015 to December 2016. The Sentinel-1 assimilation consistently improved surface soil moisture, whereas root-zone impacts were mostly neutral. Relatively larger improvements were obtained from SMAP assimilation. The joint assimilation of SMAP and Sentinel-1 observations performed best, demonstrating the complementary value of radar and radiometer observations