research

Airborne In-Situ Measurements of Formaldehyde Over California: One Year of Results from the Compact Formaldehyde Fluorescence Experiment (COFFEE) Instrument

Abstract

Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organiccompounds (VOCs) in the atmosphere, playing a role in multiple atmosphericprocesses, such as ozone (O3) production in polluted environments. Due toits short lifetime of only a few hours in daytime, HCHO also serves astracer of recent photochemical activity. While photochemical oxidation ofnon-methane hydrocarbons is the dominant source, HCHO can also be emitteddirectly from fuel combustion, vegetation, and biomass burning. The CompactFormaldehyde FluorescencE Experiment (COFFEE) instrument was built forintegration onto the Alpha Jet Atmospheric eXperiment (AJAX) payload, basedout of NASAs Ames Research Center (Moffett Field, CA). Using Non-ResonantLaser Induced Fluorescence (NR-LIF), trace concentrations of HCHO can bedetected with a sensitivity of 200 parts per trillion.Since its first research flight in December 2015, COFFEE has successfullyflown on more than 20 science missions throughout California and Nevada.Presented here are results from these flights, including boundary layermeasurements and vertical profiles throughout the tropospheric column.Californias San Joaquin Valley is a primary focus, as this region is knownfor its elevated levels of HCHO as well as O3. Measurements collected inwildfire plumes, urban centers, agricultural lands, and on and off shorecomparisons will be presented. In addition, the correlation of HCHO to othertrace gases also measured by AJAX, including O3, methane, carbon dioxide,and water vapor will also be shown. Lastly, the implications of these HCHOmeasurements on calibration and validation of remote sensing data collectedby NASAs OMI (Aura) and OMPS (SuomiNPP) satellites will be addressed

    Similar works