research

Molecular Dynamics Simulations of Liquid and Polymer Electrolytes for Energy Storage Devices

Abstract

Advancing beyond current lithium-ion technology is necessary in order to enable energy storage devices for electric airplanes. Electrolyte stability is a key limiting factor, yet the design of improved electrolytes remains a formidable challenge. Molecular dynamics (MD) simulations are a powerful tool for studying electrolytes, since they can be used to evaluate structural, thermodynamic, and transport properties, and can provide molecular-level detail often inaccessible to experimental techniques. Our computational materials groups at the NASA Ames Research Center has developed models and methods to accurately simulate both liquid and polymer electrolytes.We report the results from atomistic MD simulations of several electrolyte materials, with lithium salts dissolved in ionic liquids, dimethoxyethane (DME), and polyethylene oxide (PEO). For improved accuracy, we employ polarizable models, where each atom is given an environment-dependent atomic dipole. The simulations accurately predict bulk transport properties, including viscosity, diffusion, and ionic conductivity, in quantitative agreement with available experimental data. Moreover, the simulations provide important insights into the solvation structure of the lithium ions.We also report the results from coarse-grained MD simulations of polyanion electrolytes. In order to more efficiently capture the longer length- and time-scales of these systems, we employ a generic bead-spring model. These simulations provide important insight into how the polymer chain architecture and ionic interaction strengths affect the ionic aggregation behavior and cation dynamics. Despite the simplicity of the model, the simulations yield qualitative agreement with experimental data for similar systems

    Similar works