research

Buoyancy and thermal radiation effects for the Blasius and Sakiadis flows with a convective surface boundary condition

Abstract

This study is devoted to investigate the Buoyancy and thermal radiation effects on the laminar boundary layer about a flat-plate in a uniform stream of fluid (Blasius flow), and about a moving plate in a quiescent ambient fluid (Sakiadis flow) both under a convective surface boundary condition. Using a similarity variable, the governing nonlinear partial differential equations have been transformed into a set of coupled nonlinear ordinary differential equations, which are solved numerically by using shooting technique along side with the sixth order of Runge-Kutta integration scheme and the variations of dimensionless surface temperature and fluid-solid interface characteristics for different values of Prandtl number Pr, radiation parameter NR, parameter a and the local Grashof number Grx, which characterizes our convection processes are graphed and tabulated. Quite different and interesting behaviours were encountered for Blasius flow compared with a Sakiadis flow. A comparison with previously published results on special cases of the problem shows excellent agreement

    Similar works