On Resolution-of-the-Identity Electron Repulsion Integral Approximations and Variational Stability

Abstract

The definiteness of the Mulliken and Dirac electron repulsion integral (ERI) matrices is examined for different classes of resolution-of-the-identity (RI) ERI approximations with particular focus on local fitting techniques. For global RI, robust local RI, and nonrobust local RI we discuss the definiteness of the approximated ERI matrices as well as the resulting bounds of Hartree, exchange, and total energies. Lower bounds of Hartree and exchange energy contributions are crucial as their absence may lead to variational instabilities, causing severe convergence problems or even convergence to a spurious state in self-consistent-field optimizations. While the global RI approximation guarantees lower bounds of Hartree and exchange energies, local RI approximations are generally unbounded. The robust local RI approximation guarantees a lower bound of the exchange energy but not of the Hartree energy. The nonrobust local RI approximation guarantees a lower bound of the Hartree energy but not of the exchange energy. These issues are demonstrated by sample calculations on carbon dioxide and benzene using the pair atomic RI approximation. © 2017 American Chemical Societ

    Similar works

    Full text

    thumbnail-image